Investigation of Drell-Yan process with e⁺e⁻ yield in 13 TeV pp-collisions using 2016 year data

Aram Hayrapetyan

ANLS-EPD, 30.06.2021

Content

- Introduction
- General information
- Electron reconstruction
- Event Selection
- Tag&Probe method
- Online triggers efficiencies
- Online triggers scale factors (SFs)
- Performance of SFs in analysis region
- Summary

Introduction

 Drell–Yan (DY) process is described as a quark and antiquark annihilation producing a virtual photon or a Z boson, with a subsequent decay into two oppositely charged leptons (in this investigation e⁺e⁻). In pp-interaction at 13 TeV

σ * BR = 1980 pb, BR (Z→e⁺e⁻) ~ 3.36%

- Very attractive for investigation
- Has a high detection accuracy
- Can be used for detector calibration
- Can be used for validations of other analyses approaches (as Standard candle)
- Is a background process for other fundamental and exotic processes with e⁺e⁻ yield, so the quality of the new measurements directly depend on the accuracy of those investigations.

General information

Used data:

- CMS 2016-18 simulations of DY-process.
 Contribution of other processes with e⁺e⁻
 yield passing selection criteria estimated
 to be negligible (<1% in signal region).
- CMS 2016-18 experimental data of ppcollisions at 13 TeV (~137 fb⁻¹)

Electron reconstruction:

• Particle flow (PF)

Event selection:

- Online triggers (SingleElectron HLT)
- Offline selections

Trigger efficiency calculation:

• "Tag & Probe"

Applied corrections on MC:

- Xsec, GenWeights normalization:
 - $\frac{L_{int*\sigma}}{N_{MC}}$
- Pileup (PU) reweighting

Pileup distribution for Data and MC

Pile Up (data)

- μ number of events in bunch bunch collision (pileup)
- L_{inst}ⁱ instant value of luminosity
- $\sigma-p\mbox{-}p\mbox{-}p\mbox{-}p\mbox{-}interaction$ cross section
- f_{rev} the orbital frequency of proton bunches in LHC

Electron reconstruction

94% of Energ

of Energy

Particle-Flow (PF) global reconstruction using information from all subsystems: e, μ , γ , charged and neutral hadrons, missing-E_T etc. Algorithm consists of several steps:

- Particle track extrapolation to ECAL.
- Selection of ECAL cluster where an electron was detected.

 $|\Delta \eta| = |\eta^{\text{sc}} - \eta^{\text{extrap}}_{\text{in}}| < 0.02$

 $|\Delta \phi| = |\phi^{\text{sc}} - \phi^{\text{extrap}}_{\text{in}}| < 0.15$

• In case of being detected in a defined range:

it is said that those particles are the same.

• "WPTight": the tightest restriction on identification probability (~0.1%) has

been used.

Electron energy resolution in different domains of η

Trigger efficiency calculation

- **Problem:** Difference of online triggers efficiencies in experimental and simulated data sets due to various missmodeling effects.
- Goal: Calculation of trigger efficiencies and introduction of corresponding SFs to treat Data/MC disagreement.
- **Targets: 2016** HLT Ele27 WPTight Gsf (~ 35.80 fb^{-1}) **2017 B-C** HLT_Ele27_WPTight_Gsf (~ 14.13 fb⁻¹)
 - **2017 D-F** HLT_Ele32_WPTight_Gsf (~ 27.10 fb⁻¹)
 - 2018 HLT Ele32 WPTight Gsf (~ 59.69 fb⁻¹)
- **Events:** data and MC selected with control trigger and offline selection:

Control trigger: HLT Ele27 WPTight Gsf

Offline selections:

An existence of only two oppositely charged tight electrons with $P_T > 35$, 20 GeV within •

 $|n| \in (0, 1.44)$ and (1.57, 2.4)

Accordance to the interaction point condition` ٠

in $|\eta| \le 1.479$: |dz| < 0.1 and |dxy| < 0.05,

In $1.479 < |\eta| < 2.4$: |dz| < 0.2 and |dxy| < 0.1

Narrow interval of electrons invariant mass around Z-mass (91.2±10 GeV) to select $Z \rightarrow e^+e^$ decays 6

Tag&Probe method

Tag and probe method is used for any object efficiency measurement, where

Tag particle - well identified, triggered particle (tight selection criteria).

Probe particle - unbiased set of candidates (very loose selection criteria), either passing or failing the criteria for which the efficiency is to be measured.

Event Interpretation:

Tag electron: P_T -leading offline electron with P_T >35 GeV, $|\eta|$ < 2.4, matched (dR<0.1) to high P_T L3 electron with P_T >27 GeV

Probe electron: The other electron with P_T >20 GeV, $|\eta|$ <2.4 without any trigger object matching requirement

Probe matched electron: is the probe electron, which matches to trigger (online) electron with P_T greater than corresponding P_T - threshold (in our case 27 GeV for 2016/17 and 32 for 2017/18)

Trigger efficiency vs probe electron (P_T , η)

$$\begin{split} & \textit{Efficiency} = \frac{Tag * MatchedProbe}{Tag * Probe} (pt_{probe}, eta_{probe}) \\ & SF = \frac{Data_{Efficiency}}{MC_{Efficiency}} (pt, eta) \end{split}$$

Online triggers efficiencies

Online triggers efficiencies

Online triggers scale factors

Online triggers scale factors

11

How scale factor works

Events

Data / MC

2016 data/MC

Event selection:

Online:

HLT_Ele27_WPTight_Gsf

Offline:

- Two oppositely charged Tight electrons with $P_T > 35$, 27 GeV within $|\eta| < 2.4$
- Narrow interval of Z-mass (+/- 10 GeV)
- At least one of offline electrons matched to online electron with $P_T > 27$ GeV

Weights:

- Xsec, Pu-Reweighting
- Trigger P_T scale factors

SF OFF SF ON 10 Data 2016 10 10⁶ MC_DYToLL 10⁵ 10⁵ MC stat. unc. 10⁴ 10⁴ 10³ 10³ 10² 10² 10 10 1.4 1.2 1.0 0.8 0.8 0.6 0.6 200 pt2 pt2

Performance of SFs

Datasets: 2016 data/MC

Events selection: HLT_Ele27_WPTight_Gsf,

Two (only) oppositely charged Tight electrons with $P_T > 35$, 27 GeV within $|\eta| < 2.4$ matched to online electrons with $P_T > 27$ GeV (straightforward way to apply SFs and avoid combinatorial issues)

Performance of SFs in analysis region

2016 data/MC

Summary

- Single electron triggers SFs has been calculated using "Tag&Probe" method
- SFs are extracted in P_T , η bins for 2016-18 Triggers
- Validation of SFs was done with Drell-Yan process in e⁺e⁻ mass range 60-120 GeV
- Significant improvement in Data/MC comparison has been observed

Thank You

Links

 A. Hayrapetyan, THE STUDY OF ELECTRONS ENERGY RESOLUTION, IN CMS (LHC) EXPERIMENT USING SIMULATED DATA, YSU. Proceedings of the Physical and Mathematical Sciences, Yerevan Armenia, 2020, v. 54,

Backup

Ongoing activity

Ongoing activity

Cross section dependency from DM particle mass

SlimmedMET vs $(\Sigma P_{DM})^{Gen}_T$, $PU \rightarrow 2018_Projected$

Ongoing activity

